3.227 \(\int \frac{\sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=76 \[ \frac{2 a A \sin (c+d x) \sqrt{\sec (c+d x)}}{d \sqrt{a \sec (c+d x)+a}}+\frac{2 \sqrt{a} B \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d} \]

[Out]

(2*Sqrt[a]*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a*A*Sqrt[Sec[c + d*x]]*Sin[c + d
*x])/(d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.157209, antiderivative size = 76, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {4015, 3801, 215} \[ \frac{2 a A \sin (c+d x) \sqrt{\sec (c+d x)}}{d \sqrt{a \sec (c+d x)+a}}+\frac{2 \sqrt{a} B \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(2*Sqrt[a]*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a*A*Sqrt[Sec[c + d*x]]*Sin[c + d
*x])/(d*Sqrt[a + a*Sec[c + d*x]])

Rule 4015

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[(A*b^2*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(a*f*n*Sqrt[a + b*Csc[e + f*x]]), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt{\sec (c+d x)}} \, dx &=\frac{2 a A \sqrt{\sec (c+d x)} \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+B \int \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{2 a A \sqrt{\sec (c+d x)} \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}-\frac{(2 B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{2 \sqrt{a} B \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}+\frac{2 a A \sqrt{\sec (c+d x)} \sin (c+d x)}{d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.378419, size = 83, normalized size = 1.09 \[ \frac{2 a \left (A \sin (c+d x) \sqrt{-(\sec (c+d x)-1) \sec (c+d x)}-B \tan (c+d x) \sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right )}{d \sqrt{1-\sec (c+d x)} \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x]

[Out]

(2*a*(A*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])]*Sin[c + d*x] - B*ArcSin[Sqrt[Sec[c + d*x]]]*Tan[c + d*x]))/(
d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.286, size = 177, normalized size = 2.3 \begin{align*} -{\frac{1}{2\,d\sin \left ( dx+c \right ) } \left ( B\sqrt{2}\arctan \left ({\frac{\sqrt{2} \left ( -\cos \left ( dx+c \right ) -1+\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sin \left ( dx+c \right ) +B\sqrt{2}\arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sin \left ( dx+c \right ) +4\,A\cos \left ( dx+c \right ) -4\,A \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}{\frac{1}{\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x)

[Out]

-1/2/d*(B*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(-cos(d*x+c)-1+sin(d*x+c)))*(-2/(cos(d*x+c)+1))
^(1/2)*sin(d*x+c)+B*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*(-2/(cos(d
*x+c)+1))^(1/2)*sin(d*x+c)+4*A*cos(d*x+c)-4*A)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)/(1/cos(d*x+c))^(
1/2)

________________________________________________________________________________________

Maxima [B]  time = 2.06103, size = 354, normalized size = 4.66 \begin{align*} \frac{4 \, \sqrt{2} A \sqrt{a} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + B \sqrt{a}{\left (\log \left (2 \, \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sqrt{2} \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, \sqrt{2} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sqrt{2} \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, \sqrt{2} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2\right ) + \log \left (2 \, \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, \sqrt{2} \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, \sqrt{2} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, \sqrt{2} \cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 2 \, \sqrt{2} \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2\right )\right )}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/2*(4*sqrt(2)*A*sqrt(a)*sin(1/2*d*x + 1/2*c) + B*sqrt(a)*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2
*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) +
 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin
(1/2*d*x + 1/2*c) + 2)))/d

________________________________________________________________________________________

Fricas [B]  time = 0.569846, size = 819, normalized size = 10.78 \begin{align*} \left [\frac{4 \, A \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) +{\left (B \cos \left (d x + c\right ) + B\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac{4 \,{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{2 \,{\left (d \cos \left (d x + c\right ) + d\right )}}, \frac{2 \, A \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) +{\left (B \cos \left (d x + c\right ) + B\right )} \sqrt{-a} \arctan \left (\frac{2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{d \cos \left (d x + c\right ) + d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(4*A*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (B*cos(d*x + c) + B)*sqrt(
a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x +
c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x +
c) + d), (2*A*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (B*cos(d*x + c) + B)*s
qrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x +
 c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )} \left (A + B \sec{\left (c + d x \right )}\right )}{\sqrt{\sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2)/sec(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x))/sqrt(sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{a \sec \left (d x + c\right ) + a}}{\sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)/sqrt(sec(d*x + c)), x)